Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse.

نویسندگان

  • S Mohand-Said
  • A Deudon-Combe
  • D Hicks
  • M Simonutti
  • V Forster
  • A C Fintz
  • T Léveillard
  • H Dreyfus
  • J A Sahel
چکیده

The role of cellular interactions in the mechanism of secondary cone photoreceptor degeneration in inherited retinal degenerations in which the mutation specifically affects rod photoreceptors was studied. We developed an organ culture model of whole retinas from 5-week-old mice carrying the retinal degeneration mutation, which at this age contain few remaining rods and numerous surviving cones cocultured with primary cultures of mixed cells from postnatal day 8 normal-sighted mice (C57BL/6) retinas or retinal explants from normal (C57BL/6) or dystrophic (C3H/He) 5-week-old mice. After 7 days, the numbers of residual cone photoreceptors were quantified after specific peanut lectin or anti-arrestin antibody labeling by using an unbiased stereological approach. Examination of organ cultured retinas revealed significantly greater numbers of surviving cones (15-20%) if cultured in the presence of retinas containing normal rods as compared with controls or cocultures with rod-deprived retinas. These data indicate the existence of a diffusible trophic factor released from retinas containing rod cells and acting on retinas in which only cones are present. Because cones are responsible for high acuity and color vision, such data could have important implications not only for eventual therapeutic approaches to human retinal degenerations but also to define interactions between retinal photoreceptor types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial characterization of retina-derived cone neuroprotection in two culture models of photoreceptor degeneration.

PURPOSE To define the nature and estimate the molecular weight range of soluble endogenous retinal trophic activities on cone photoreceptor survival in two models of cone degeneration. METHODS Diffusible factors from dissociated retinal cell cultures of 8-day normal-sighted (C57BL/6J) mice were tested for cone-survival-promoting activity by two approaches and by using two independent photorec...

متن کامل

Development and Degeneration of Cone Bipolar Cells Are Independent of Cone Photoreceptors in a Mouse Model of Retinitis Pigmentosa

Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP) in one subset of cone bipolar cells (type 7) into...

متن کامل

Excess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors.

The orphan nuclear receptor NR2E3 is a direct transcriptional target of NRL, the key basic motif leucine zipper transcription factor that dictates rod versus cone photoreceptor cell fate in the mammalian retina. The lack of NR2E3 function in humans and in retinal degeneration rd7 mutant mouse leads to increased S-cones accompanied by rod degeneration, whereas ectopic expression of Nr2e3 in the ...

متن کامل

Cell based therapies in retinal diseases

Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...

متن کامل

A Hybrid Photoreceptor Expressing Both Rod and Cone Genes in a Mouse Model of Enhanced S-Cone Syndrome

Rod and cone photoreceptors subserve vision under dim and bright light conditions, respectively. The differences in their function are thought to stem from their different gene expression patterns, morphologies, and synaptic connectivities. In this study, we have examined the photoreceptor cells of the retinal degeneration 7(rd7) mutant mouse, a model for the human enhanced S-cone syndrome (ESC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 14  شماره 

صفحات  -

تاریخ انتشار 1998